1. Generation of induced pluripotent stem cells (iPSCs) from human foreskin fibroblasts.
    Erdlenbruch F, Rohwedel J, Ralfs P, Thomitzek A, Kramer J, Cakiroglu F. (2018) Stem Cell Res. 2018 Dec;33:79-82. doi: 10.1016/j.scr.2018.10.010.
  2. Inhibition of Notch Signaling Ameliorates Acute Kidney Failure and Downregulates Platelet-Derived Growth Factor Receptor β in the Mouse Model.
    Cakiroglu F, Enders-Comberg SM, Pagel H, Rohwedel J, Lehnert H, Kramer J. (2016) Cells Tissues Organs. 201(2):109-17. doi: 10.1159/000442463.
  3. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.
    Cakiroglu F, Enders-Comberg SM, Pagel H, Rohwedel J, Lehnert H, Kramer J. (2016) Cell Biol Int. Mar;40(3):298-307. doi: 10.1002/cbin.10566.
  4. Gluteal and abdominal subcutaneous adipose tissue depots as stroma cell source: gluteal cells display increased adipogenic and osteogenic differentiation potentials.
    Iwen K, Priewe A, Winnefeld M, Rose C, Siemers F, Rohwedel J, Cakiroglu F, Lehnert H, Schepky A, Klein J, Kramer J (2014). Exp Dermatol , doi: 10.1111/exd.12406. [Epub ahead of print].
  5. Chondrogenic differentiation of bone marrow-derived mesenchymal stromal cells via biomimetic and bioactive poly-?-caprolactone scaffolds.
    Schagemann JC, Paul S, Casper ME, Rohwedel J, Kramer J, Kaps C, Mittelstaedt H, Fehr M, Reinholz GG (2013). J Biomed Mater Res A 101: 1620-1628.
  6. Minor cartilage collagens type IX and XI are expressed during embryonic stem cell-derived in vitro chondrogenesis.
    Krug D, Klinger M, Haller R, Hargus G, Büning J, Rohwedel J, Kramer J (2013). Ann Anat. 195: 88-97.
  7. Notch1 signaling regulates chondrogenic lineage determination through Sox9 activation.
    Haller R, Schwanbeck R, Martini S, Bernoth K, Kramer J, Just U, Rohwedel J (2012). Cell Death Differ. 19:461-469.
  8. Simvastatin modulates mouse embryonic stem cell-derived chondrogenesis in vitro.
     Kramer J, Bartsch M, Krug D, Klinger M, Nitschke M, Rohwedel J (2012). Toxicol In Vitro. 26:1170-1176.
  9. Human mesenchymal stromal cells from adipose tissue of the neck.
    Böhrnsen F, Rotter N, Lindner U, Meier M, Wollenberg B, Rohwedel J, Kramer J. (2012). Eur Arch Otorhinolaryngol 269: 2561-2570.
  10. Chondrogenic Differentiation in vitro of Murine Two-Factor Induced Pluripotent Stem Cells is Comparable to Murine Embryonic Stem Cells.
    Kuboth S, Kramer J, Rohwedel J. (2012). Cells Tissues Organs. 196: 481-489.
  11. Enhanced fibrillin-2 expression is a general feature of wound healing and sclerosis: potential alteration of cell attachment and storage of TGF-beta.
    Brinckmann J, Hunzelmann N, Kahle B, Rohwedel J, Kramer J, Gibson MA, Hubmacher D, Reinhardt DP. (2010). Lab Invest. 90: 739-752.
  12. Effect of matrix elasticity on the maintenance of the chondrogenic phenotype.
    Schuh E, Kramer J, Rohwedel J, Notbohm H, Müller R, Gutsmann T, Rotter N. (2010). Tissue Eng Part A 16:1281-1290.
  13. Improved proliferation and differentiation capacity of human mesenchymal stromal cells cultured with basement-membrane extracellular matrix proteins. 
    Lindner U, Kramer J, Behrends J, Driller B, Wendler NO, Boehrnsen F, Rohwedel J, Schlenke P (2010). Cytotherapy 12: 992-1005.
  14. Murine mesenchymal progenitor cells from different tissues differentiated via mesenchymal microspheres into the mesodermal direction.
    Böhrnsen F, Lindner U, Meier M, Gadallah A, Schlenke P, Lehnert H., Rohwedel J, Kramer J (2009). BMC Cell Biology 10: 92.
  15. Isolation and characterization of adult stem cells from human salivary glands.
    Rotter N, Oder J, Schlenke P, Lindner U, Böhrnsen F, Kramer J, Rohwedel J, Huss R, Brandau S, Wollenberg B, Lang S. (2008). Stem Cells Dev. 17: 509-518.
  16. Loss of Sox9 function results in defective chondrocyte differentiation of mouse embryonic stem cells in vitro. 
    Hargus G, Kist R, Kramer J, Gerstel D, Neitz A, Scherer G, Rohwedel J. (2008). Int J Dev Biol. 52: 323-332.
  17. In vivo matrix-guided human mesenchymal stem cells. Cell.  
    Kramer, J., Böhrnsen, F., Lindner, U., Behrens, P., Schlenke, P., Rohwedel, J. (2006). Mol. Life Sci. 63: 616-626.
  18. Cells differentiated from mouse embryonic stem cells via embryoid bodies express embryonic renal marker molecules.
    Kramer, J., Steinhoff, J., Klinger, M., Fricke, L., Rohwedel, J. (2006). Differentiation 74: 91-104.
  19. Stem cell-derived chondrocytes for regenerative medicine.
    Kramer, J., Böhrnsen, F., Rohwedel, J. (2006). Transplant. Proc. 38: 762-765.
  20. Derivation and chacterization of chondrocytes from embryonic stem cells in vitro. Kramer, J., Hargus, G., Rohwedel, J. (2006). Methods Mol. Biol. 330: 171-190.
  21. Ultrastructural analysis of mouse embryonic stem cell-derived chondrocytes. Kramer, J., Klinger, M., Kruse, C., Faza, M., Hargus, G., Rohwedel, J. (2005). Anat. Embryol. 210: 175-185.
  22. Mouse ES cell lines show a variable degree of chondrogenic differentiation in vitro.
    Kramer, J., Hegert, C., Hargus, G., Rohwedel, J. (2005). Cell Biol. Int. 29: 139-146
  23. Pluripotency of adult stem cells derived from human and rat pancreas.
    Kruse, C., Birth, M., Rohwedel, J., Assmuth, K., Goepel, A., and Wedel, T. (2004). Appl. Phys. A 79: 1617-1624.
  24. In vitro differentiation of embryonic stem cells: bone and cartilage.
    Kramer, J., Hegert, C., Rohwedel, J. (2003). Methods Enzymol. 365: 251-268.
  25. Chondrocytes derived from mouse embryonic stem cells.
    Kramer, J., Hegert, C., Hargus, G., Rohwedel, J. (2003). Cytotechnology 41:177-187
  26. Evidence for posttranscriptional regulation of the multi K homology domain protein vigilin by a small peptide encoded in the 5' leader sequence.
    Rohwedel, J., Kügler, S., Engebrecht, T., Purschke, W., Müller, P.K., Kruse, C. (2003).Cell. Mol. Life Sci. 60: 1705-1715.
  27. Differentiation plasticity of chondrocytes derived from mouse embryonic stem cells.
    Hegert, C., Kramer, J., Hargus, G., Müller, J., Guan, K., Wobus, A.M., Müller, P.K., Rohwedel, J. (2002). J. Cell Sci. 115: 4617-4628.
  28. Gewinnung und Verwendung gewebespezifischer und embryonaler Stammzellen – Einführung in den aktuellen Stand. In: "Humane Stammzellen. Therapeutische Optionen - Ökonomische Perspektiven - Mediale Vermittlung." Rohwedel, J. (2002). (Ed.: C. Hauskeller), pp. 18-32, Pabst Science Publishers, Lengerich.
  29. Estradiol has a direct impact on the exocrine pancreas as demonstrated by enzyme and vigilin expression.
    Hilgendorf, I., Gellersen, O., Emmrich, J., Mikkat, U., Rohwedel, J., Krammer, H.J., Müller, P.K., Kruse, C. (2001). Pancreatology 1: 24-29.
  30. Characteristics of human chondrocytes, osteoblasts and fibroblasts seeded onto a type I/III collagen sponge under different culture conditions – a light, scanning and transmission electron microscopy study.
    Fuß, M., Ehlers, E.-M., Russlies, M., Rohwedel, J., Behrens, P. (2000). Ann. Anat. 182: 303-310.
  31. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4.
    Kramer, J., Hegert, C., Guan, K., Wobus, A.M., Müller, P.K., Rohwedel, J. (2000). Mech. Dev. 92: 193-205.
  32. Neues Therapieverfahren für lokalisierte Knorpeldefekte – Ermutigende Resultate mit der autologen Chondrozytenimplantation.
    Behrens, P., Ehlers, E.-M., Köchermann, K.-U., Rohwedel, J., Russlies, M., Plötz, W. (1999). MMW-Fortschr. Med. 141: 793-795.
  33. Development of a biocomposite to fill out articular cartilage lesions. Light, scanning and transmission electron microscopy of sheep chondrocytes cultured on a collagen I/III sponge.
    Ehlers, E.-M., Fuß, M., Rohwedel, J., Russlies, M., Kühnel, W., Behrens, P. (1999). Ann. Anat. 181: 513-518.
  34. Induction of cellular differentiation by retinoic acid in vitro.
    Rohwedel, J., Guan, K., Wobus, A.M. (1999). Cells Tissues Organs 165: 190-202.
  35. Production of trypsin by cells of the exocrine pancreas is paralleled by the expression of the KH-protein vigilin.
    Kruse, C., Emmrich, J., Rumpel, E., Klinger, M.H.F., Grünweller, A., Rohwedel, J., Krammer, H.-J., Kühnel, W., Müller, P.K. (1998). Exp. Cell Res. 239: 111-118.
  36. Formation of postsynaptic-like membranes during differentiation of embryonic stem cells in vitro.  
    Rohwedel, J., Kleppisch, T., Pich, U., Guan, K., Jin, S., Zuschratter, W., Hopf, C., Hoch, W., Hescheler, J., Witzemann, V., Wobus, A.M. (1998). Exp. Cell Res. 239: 214-225.
  37. Loss of b1 integrin function results in a retardation of myogenic, but an acceleration of neuronal differentiation of embryonic stem cells in vitro.
    Rohwedel, J., Guan, K., Horak, V., Zuschratter, W., Shan, J., Ahnert-Hilger, G., Fässler, R, Wobus A.M. (1998). Dev. Biol. 201: 167-184.
  38. Development of G protein-mediated Ca2+ channel regulation in mouse embryonic stem cell-derived neurons.
    Strübing, C., Rohwedel, J., Ahnert-Hilger, G., Wiedenmann, B., Hescheler, J., Wobus, A.M. (1997). Eur. J. Neurosci. 9: 824-832.
  39. Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis.
    Hescheler, J., Fleischmann, B.K., Lentini, S., Maltsev, V.A., Rohwedel, J., Wobus, A.M., Addicks, K. (1997). Cardiovascular Res. 36: 149-162.
  40. Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes.
    Wobus, A.M., Kaomei, G., Jin, S., Wellner, M.-C., Rohwedel, J., Guanju, J., Fleischmann, B., Katus, H.A., Hescheler, J., Franz, W.-M. (1997). J. Mol. Cell. Cardiol. 29: 1525-1539.
  41. Differentiation and integrity of cardiac muscle cells are impaired in the absence of b1 integrin.
    Fässler, R., Rohwedel, J., Maltsev, V., Bloch, W., Lentini, S., Gullberg, D., Hescheler, J., Addicks, K., Wobus, A.M. (1996). J. Cell Sci. 109: 2989-2999.
  42. Primordial germ cell-derived mouse embryonic germ (EG) cells in vitro resemble undifferentiated stem cells with respect to differentiation capacity and cell cycle distribution. 
    Rohwedel, J., Sehlmeyer, U., Jin, S., Meister, A., Wobus, A.M. (1996). Cell Biol. Int. 20: 579-587.
  43. Primordial germ cell-derived embryonic germ (EG) cells of the mouse - In vitro model for cytotoxicity studies with chemical mutagens.
    Sehlmeyer, U., Rohwedel, J., Wobus, A.M. (1996). Toxicology in Vitro 10: 755-763.
  44. M-twist expression inhibits mouse embryonic stem cell-derived myogenic differentiation in vitro
    Rohwedel, J., Horák, V., Hebrok, M., Füchtbauer, E.-M., Wobus, A.M. (1995). Exp. Cell Res. 220: 92-100.
  45. Development of cardiomyocytes expressing cardiac-specific genes, action potentials and ionic channels during embryonic stem cell-derived cardiogenesis. 
    Wobus, A.M., Rohwedel, J., Maltsev, V., Hescheler, J. (1995). Ann. N.Y. Acad. Sci. 752: 460-469.
  46. In vitro cellular models for cardiac development and pharmacotoxicology.
    Wobus, A.M., Rohwedel, J., Maltsev, V., Hescheler, J. (1995). Toxicology in vitro 9: 477-488.
  47. The developmental potential of mouse embryonic stem cells - Cardiogenesis and myogenesis in vitro
    Wobus, A.M., Rohwedel, J., Maltsev, V., Hescheler, J. (1995). J. Exp. Clin. Canc. Res., Suppl. 14: 110-113.
  48. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents.
    Maltsev, V., Wobus, A.M., Rohwedel, J., Bader, M., Hescheler, J. (1994). Circ. Res. 75: 233-244.
  49. Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: Developmentally regulated expression of myogenic determination genes and functional expression of ionic currents.
    Rohwedel, J., Maltsev, V., Bober, E., Arnold, H.H., Hescheler, J., Wobus, A.M. (1994). Dev. Biol. 164: 87-101.
  50. Expression of M-cadherin protein in myogenic cells during prenatal mouse development and differentiation of embryonic stem cells in culture.
    Rose, O., Rohwedel, J., Reinhardt-Maelicke, S., Bachmann, M., Cramer, M., Rotter, M., Wobus, A.M., Starzinski-Powitz, A. (1994). Dev. Dyn. 201: 245-259.
  51. In vitro differentiation of embryonic stem cells into cardiomyocytes or skeletal muscle cells is specifically modulated by retinoic acid.
    Wobus, A.M., Rohwedel, J., Maltsev, V., Hescheler, J. (1994). Roux's Arch. Dev. Biol. 204: 36-45.
  52. Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types.
    Maltsev, V.A., Rohwedel, J., Hescheler, J., Wobus, A.M. (1993). Mech. Dev. 44: 41-50.
  53. Different modes of hypervariability in (GATA)n simple sequence repeat loci.
    Rohwedel, J., Weichenhan, D., Meier, C., Traut, W. (1993). Insect Mol. Biol. 2: 49-58.
  54. An in vitro model system of embryonic stem cell (ESC)-derived cardiomyocytes for pharmacological and embryotoxicological studies. 
    Wobus, A.M., Maltsev, V., Rohwedel, J., Hescheler, J. (1993). Plzen Medical Report, Suppl. 67: 37-42.
  55. Inheritance and mutation of hypervariable (GATA)n microsatellite loci in a moth, Ephestia kuehniella.
    Traut, W., Epplen, J.T., Weichenhan, D., Rohwedel, J. (1992). Genome 35: 659-666.


Review article and book contributions

  • Kramer, J., Schlenke, P., Rohwedel, J. (2007). Induction of ES cell-derived cartilage formation. In: Current Protocols in Cell Biology. (Eds.: Juan S. Bonifacino, Mary Dasso, Joe B. Harford, Jennifer Lippincott-Schwartz, Kenneth M. Yamada), Chapter 23:Unit 23.5.
  • Kramer J., Hargus G., Rohwedel J. (2006). Derivation and characterization of chondrocytes from ES cells in vitro. In: "Embryonic Stem Cells-II: Differentiation Protocols". (Ed.: K. Turksen), ), pp. 171-190, Humana Press,Totowa, NJ, U.S.A..
  • Rohwedel, J. (2003). Differenzierung embryonaler Stammzellen - neue Perspektiven für Zell- und Gewebeersatz. In: "Tissue Engineering: Neues zum Gewebeersatz im Muskel-Skelett-System." (Ed.: J. Bruns), pp. 203-216, Steinkopff, Darmstadt.
  • Hegert, C., Kramer, J., Oppelt, C., Müller, P.K., Rohwedel, J. (2003). Knorpeldifferenzierung in vitro aus embryonalen Stammzellen der Maus. In: "Tissue Engineering: Neues zum Gewebeersatz im Muskel-Skelett-System." (Ed.: J. Bruns), pp. 217-226, Steinkopff, Darmstadt.
  • Rohwedel, J., Hegert, C., Guan, K., Wobus A.M. (2001). Embryonic stem cells as in vitro model for mutagenicity and embryotoxicity studies – present state and future prospects. Toxicology in Vitro 15:741-753.
  • Kruse, C., Hilgendorf, I., Gellersen, O., Rohwedel, J., Pfeiffer, T., Emmrich, J., Krammer, H.-J., Müller, P.K. (2000). In vitro demonstration of the gonadal-pancreatic-axis represented by vigilin expression in pancreatic acinary cells. In: "Neurogastroenterology – Falk Symposium 112." (Eds.: Singer, Krammer), pp. 375-382, Kluwer Academic Publishers, Dordrecht.
  • Guan, K., Rohwedel, J., Wobus, A.M. (1999). Embryonic stem cell differentiation models: cardiogenesis, myogenesis, neurogenesis, epithelial and vascular smooth muscle cell differentiation in vitro. Cytotechnology 30: 211-226.
  • Wobus, A.M., Guan, K., Rohwedel, J., Strübing, C., Drab, M. (1998). Embryonic stem cell differentiation models: cardiovascular, myogenic and neurogenic development in vitro.  In: "New Developments and New Applications in Animal Cell Technology." (Eds.: O.-W. Merten et al.), pp. 689-703, Kluwer Academic Publishers, Dordrecht.
  • Wobus, A.M., Rohwedel, J., Strübing, C., Jin, S., Adler, K., Maltsev, V., Hescheler, J. (1997). In vitro differentiation of embryonic stem cells. In: "Methods in developmental toxicology and biology." (Eds.: S. Klug, R. Thiel), pp. 1-17, Blackwell, Berlin, Wien.
  • Wobus, A.M., Rohwedel, J., Fässler, R. (1997).  'Loss of function' strategies in vitro: b1 integrin-deficient embryonic stem cell-derived cardiogenesis, myogenesis and neurogenesis. In: "Developments in Animal and Veterinary Sciences: Animal Alternatives, Welfare and Ethics." (Eds.: L.F.M. van Zutphen, M. Balls), pp. 903-908, Elsevier, Amsterdam, Lausanne, New York.
  • Wobus, A.M., Rohwedel, J., Maltsev, V., Hescheler, J. (1994). Embryonic stem cell-de­rived cardiogenesis and myogenesis. In: "Ernst Schering Research Foundation Workshop 11: Cell Culture in Pharmaceutical Research."  (Eds.: N.E. Fusenig, H. Graf), pp. 29-57, Springer, Berlin.