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Abstract
Hepatitis C virus (HCV) infection is a leading cause of liver disease worldwide. The HCV

RNA genome is translated into a single polyprotein. Most of the cleavage sites in the non-

structural (NS) polyprotein region are processed by the NS3/NS4A serine protease. The

vital NS2-NS3 cleavage is catalyzed by the NS2 autoprotease. For efficient processing at

the NS2/NS3 site, the NS2 cysteine protease depends on the NS3 serine protease domain.

Despite its importance for the viral life cycle, the molecular details of the NS2 autoprotease

activation by NS3 are poorly understood. Here, we report the identification of a conserved

hydrophobic NS3 surface patch that is essential for NS2 protease activation. One residue

within this surface region is also critical for RNA replication and NS5A hyperphosphoryla-

tion, two processes known to depend on functional replicase assembly. This dual function

of the NS3 surface patch prompted us to reinvestigate the impact of the NS2-NS3 cleavage

on NS5A hyperphosphorylation. Interestingly, NS2-NS3 cleavage turned out to be a prereq-

uisite for NS5A hyperphosphorylation, indicating that this cleavage has to occur prior to rep-

licase assembly. Based on our data, we propose a sequential cascade of molecular events:

in uncleaved NS2-NS3, the hydrophobic NS3 surface patch promotes NS2 protease stimu-

lation; upon NS2-NS3 cleavage, this surface region becomes available for functional repli-

case assembly. This model explains why efficient NS2-3 cleavage is pivotal for HCV RNA

replication. According to our model, the hydrophobic surface patch on NS3 represents a

module critically involved in the temporal coordination of HCV replicase assembly.

Author Summary

Hepatitis C virus (HCV) replicates its genome in close association to cellular membranes
which serve as assembly site of multi-subunit replication complexes. The process of
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replication complex maturation must be properly controlled to prevent the non-functional
maturation/assembly of these complexes. In this process, the temporal regulation of viral
polyprotein processing often plays a pivotal role as exemplified by the strict requirement
for NS2-NS3 cleavage for HCV genome replication. We demonstrate here that a conserved
hydrophobic NS3 surface patch activates the NS2 protease to stimulate NS2-NS3 cleavage.
By dissecting the role of these NS3 surface residues in viral RNA replication, we show that
one of these NS3 residues is also a critical determinant for HCV genome replication by
negatively regulating NS5A hyperphosphorylation. Surprisingly, further experiments re-
vealed that the NS2-NS3 cleavage is a prerequisite for NS5A hyperphosphorylation. To
fulfill the requirements for gradual assembly into functional replication complexes, an or-
dered cascade of molecular events takes place: in uncleaved NS2-NS3, the hydrophobic
NS3 surface patch promotes NS2 protease stimulation; upon NS2-NS3 cleavage, this sur-
face region becomes available for functional replicase assembly. As a consequence, the hy-
drophobic surface patch on free NS3 can promote NS5A hyperphosphorylation as an
indication of functional replicase assembly.

Introduction
Hepatitis C virus (HCV) is a single-stranded positive-sense RNA virus belonging to the family
Flaviviridae and is with 170 million infected individuals worldwide an important cause of
chronic liver disease [1]. The positive sense RNA genome contains a 5’-untranslated region
(UTR), a single open reading frame (ORF) that encodes both structural as well as non-structur-
al (NS) viral proteins and a 3’UTR. Cap-independent translation of the viral genome yields a
single polyprotein that is co- and posttranslationally processed into the individual proteins by
host signal peptidases and two viral proteases NS2-NS3 and NS3-4A. The host signal pepti-
dases cleave at the junctions of Core/E1, E1/E2, E2/p7 and p7/NS2 [2–4]. The NS3/NS4A ser-
ine protease complex mediates the cleavages of the non-structural proteins NS3-NS5B [5,6].
The chymotrypsin-like serine protease domain residing in the N- terminal 180 amino acids of
NS3 requires NS4A as a cofactor for full activity [5,7,8]. NS3 harbors downstream of the prote-
ase domain ATPase and helicase activities [9].

The NS2 protein (217 amino acids, aa) is membrane-associated via its N-terminal domain
that consists of three putative transmembrane segments with a perinuclear ER localization
[10,11]. The C-terminal protease domain (aa 94–217) resides on the cytoplasmic face of the ER
membrane [10,12] and, with the N-terminal domain of NS3, forms the NS2-NS3 autoprotease
that catalyzes the cleavage at the NS2/NS3 site [7,13,14]. The putative catalytic triad of the
NS2-NS3 protease resides entirely in NS2 and autocleavage at the NS2/NS3 junction is inde-
pendent of the NS3 serine protease activity [7,15,16]. The NS2 protease domain is highly
conserved among HCV genotypes and its crystal structure indicates that a dimer forms a com-
posite active site with a catalytic triad analogous to those of cysteine proteases [16]. Recently,
NS2, followed by only two residues of NS3, has been shown to be a bona fide protease exhibit-
ing low-level intrinsic protease activity. This NS2 protease activity is stimulated by the NS3 ser-
ine protease domain (residues 1–180) defining this domain as stimulatory cofactor for NS2
[17]. Cleavage between NS2 and NS3 is essential for RNA genome replication of the full-
length virus and subgenomic NS2-NS5B replicons but not for NS3/4A serine protease activity
[18–20]. Furthermore, the NS2 protein, but not its proteolytic activity, is required for the
production of infectious virus [21–29]. The crystal structure of the NS2 protease domain repre-
sents the post-cleavage conformation, which likely differs from the one of the NS2-NS3
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precursor [16]. Due to the lack of the NS2-NS3 structure, little is known about the NS2-NS3
cleavage mechanism and its regulation by NS3. Mechanistically, it was proposed that conserved
surface areas of NS2 and NS3 may interact to contribute to a functional catalytic NS2-NS3
environment and correct positioning of the scissile bond [16].

To identify molecular features that are critical for NS2 protease stimulation by NS3, we con-
ducted a comprehensive mutagenesis screen of the entire NS3 protease domain. We identified
a conserved hydrophobic NS3 surface patch that is essential for efficient NS2 protease activa-
tion in the context of uncleaved NS2-NS3 and demonstrate that NS2 protease stimulation
mainly depends on hydrophobic protein-protein interactions. Furthermore, mutational analy-
sis of this NS3 surface patch revealed that this area is also pivotal for viral RNA replication and
NS5A hyperphosphorylation. Based on these findings we propose a sequential cascade of mo-
lecular events where the hydrophobic NS3 surface patch orchestrates NS2 protease stimulation,
NS5A hyperphosphorylation and viral RNA replication. Moreover, this study defines an unex-
pected effect of the NS2-NS3 cleavage and offers a molecular understanding why efficient NS2-
NS3 cleavage and the generation of free NS3 are essential for viral RNA replication.

Results

Identification of amino acids in the NS3 protease domain required for the
activation of the NS2 protease by alanine scanning mutagenesis
The NS2 protease has a low-level intrinsic ability to cleave the NS2-3 precursor protein and
this function is strongly enhanced by the NS3 protease domain (aa 1–180) [17,30]. The NS2-
NS3 cleavage can be analyzed in a cell-based assay by expressing HCV NS2-NS3 polyprotein
fragments from T7 promoter of pcite-FLAG-NS2-NS3(1–172)GST plasmid in T7 polymerase
producing Huh-7/T7 cells additionally boosted by the MVA-T7pol vaccinia virus system fol-
lowed by Western blot analysis (Fig. 1A and 1B).

To investigate the mechanism of NS2-NS3 cleavage, we aimed at the identification of resi-
dues in the NS3 protease domain that are critical for NS2 stimulation. Accordingly, we estab-
lished an experimental set-up that retains robust NS2-NS3 cleavage but yet is sensitive to
perturbations of NS2 activation when mutating residues in NS3. To this end, analysis of C-ter-
minal truncations of the NS3 protease domain revealed that NS3 residues 1–169 were able to
detectably activate NS2-NS3 cleavage. Furthermore, a NS3 protease domain consisting of aa
1–172 was found to be sufficient to stimulate NS2-NS3 cleavage to a level comparable with
NS2-NS3(1–180) (Fig. 1C and 1D). Therefore, we used pcite-FLAG-NS2-NS3(1–172)GST as
the basis for our di-alanine scanning mutagenesis of the entire (genotype 1b)-derived NS3
protease domain and determined the impact of these di-alanine NS3 mutations on the NS2 ac-
tivation by measuring the NS2-NS3 cleavage by Western blotting (Fig. 1A and 1B).

Among all tested NS3 di-alanine mutants we identified 8 candidates that either strongly in-
terfere with (IP114/115AA and GI152/153AA) or inhibit (IT3/4AA, LY104/105AA, LV106/
107AA, LL126/127AA, PL142/143AA and DF168/169AA) the NS2-NS3 cleavage (Fig. 1E and
1F). To rule out that these NS3 mutations affect NS3 protein function(s) not related to the
NS2-activation, we introduced the inhibitory mutations into pcite-NS3(1–172)GST/BK and
determined their NS3 serine protease activity in a trans-cleavage assay in the presence of the
NS4A cofactor with a NS4B/NS5A serine protease substrate (S1A Fig.). While the NS3 muta-
tions IT3/4AA and IP114/115AA exhibit serine protease activity comparable to wild type NS3
in this trans-cleavage assay, mutations LY104/105AA and LL126/127AA reduced NS3 serine
protease activity but still allowed for detectable cleavage of the NS4B/NS5A substrate (S1B
and S1C Fig.). In contrast, the NS3 double mutations LV106/107AA, PL142/143AA, GI152/
153AA and DF168/169AA did not display detectable NS3 serine protease activity in this assay
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Fig 1. Di-alanine scanningmutagenesis of the NS3 protease domain identified amino acids important for the NS2-protease activation by NS3. (A)
The workflow to identify NS3 mutations that inhibit NS2-NS3 cleavage. (B) Scheme of the HCV NS2-NS3 cleavage assay. NS2-mediated cleavage of
expressed FLAG-NS2-NS3(1–172)GST/BK polyprotein fragments results in the generation of FLAG-NS2 and NS3(1–172)GST cleavage products. (C) Effect
of NS2-NS3 truncations on NS2-NS3 autoprocessing. Plasmids with the indicated NS3 C-terminal truncations were expressed and NS2-NS3 cleavage was
detected byWestern blotting. NS3(1–180) refers to FLAG-NS2-NS3(1–180)GST/BK. Mock indicates cells transfected with a pcite2a vector control. The
positions of FLAG-NS2-NS3-GST, FLAG-NS2 and NS3-GST proteins are indicated by arrows. (D) Levels of NS2-NS3 cleavage were quantified from
Western blots. (E) Inhibition of NS2-NS3 cleavage by selected alanine mutations in NS3. Plasmids encoding FLAG-NS2-NS3(1–172)GST with the indicated
NS3 mutations were expressed and NS2-NS3 cleavage was detected byWestern blotting. WT refers to wild type FLAG-NS2-NS3(1–172), and NS2-C184-A
refers to a plasmid expressing NS2-NS3 polyprotein with a NS2-protease active site mutation. Mock indicates cells transfected with a vector control. The
positions of the FLAG-NS2-NS3(1–172)GST, NS3(1–172)GST, and FLAG-NS2 proteins are indicated by arrows. (F) Signals of Flag-NS2-NS3GST and
NS3GST derivatives were quantified by ImageJ software from three Western blots to calculate the percentage of NS2-NS3 cleavage.

doi:10.1371/journal.ppat.1004736.g001
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(S1B and S1C Fig.). Mapping of these NS3 residues on a NS3 structure revealed that residues
LV106/107, PL142/143, GI152/153 and DF168/169 are directed towards the center of the NS3
protein suggesting that changing these amino acids pairwise to alanine might affect proper
NS3 protein folding (S2 Fig.). Based on these observations only the NS3 mutations IT3/4AA,
LY104/105AA, IP114/115AA and LL126/127AA block the NS2 protease activating function of
NS3 but still allow for NS3/NS4A serine protease activity. Accordingly, NS3 mutations LV106/
107AA, PI142/143AA, GI152/153AA and DF168/169AA were not further analyzed.

A hydrophobic surface patch in the NS3 protease domain is the main
determinant for the NS2 protease stimulation by NS3
Since activation of NS2 by NS3 should require interaction of NS2 with NS3, we hypothesized
that the amino acids involved, should be localized on the NS3 surface. Mapping of NS3 muta-
tions that selectively blocked NS2 protease activation onto the NS3 crystal structure [31] re-
vealed that I3, Y105, P115 and L127 constitute a continuous hydrophobic surface patch, while
the residues T4, L104, I114 and L126 are directed more towards the protein core (Fig. 2A).

To investigate if this surface area is critical for the NS2 protease stimulation by NS3, we mu-
tated these residues individually as well as simultaneously and analyzed their impact on NS2-
NS3 cleavage. While the individual NS3 mutations Y105A, P115A and L127A allowed for NS2-
NS3 cleavage to different degrees, their combinations inhibited NS2-NS3 processing, indicating
that the identified hydrophobic patch is indeed pivotal for the NS3-mediated NS2 protease
stimulation (Fig. 2B). Since the I3A mutation is located in the proximity of the NS2/NS3 site
and thus might act as a cleavage site mutant we did not focus on this residue. In order to evalu-
ate if the hydrophobic character or the amino acid identity are critical for NS2 activation, we
mutated the surface amino acids Y105, P115 and L127 individually and simultaneously to ei-
ther phenylalanine or arginine. While all single or double phenylalanine exchanges were func-
tionally tolerated to various degrees (Fig. 2D), the introduction of a single charged amino acid
at position 105 (Y105R) or 127 (L127R) strongly inhibited NS2 protease activation (Fig. 2D
and S3 Fig.). In contrast, a single proline-to-arginine exchange at position 115 (P115R) had
only a moderate effect on NS2-NS3 cleavage indicating more flexibility at this position provid-
ed that the surrounding area remains hydrophobic (Fig. 2D and S3 Fig.). These results revealed
that the hydrophobicity of the amino acid side chains rather than their identities determine the
function of this NS3 surface area for NS2 protease stimulation. The fact that the NS3 residues
Y105, P115 and L127 are conserved among all HCV genotypes suggested that this hydrophobic
patch and its role in the NS3-mediated NS2 activation represents a conserved feature in the
HCV life cycle. To confirm this assumption, we introduced the mutations into pcite-FLAG-
NS2-NS3(1–172)GST/JFH1 that is based on genotype 2a (JFH1) NS2-NS3 sequence and deter-
mined the extent of the NS2-NS3 cleavage. Overall, the efficiency of the NS2-NS3 cleavage in
the presence of the minimal NS3-cofactor domain (aa 1–172) for JFH1 appears to be increased
when compared to the genotype 1b (compare Fig. 2B and 2D). As observed for genotype 1b,
individual exchanges of P115A and L127A had a minor influence on the NS2-NS3 cleavage ef-
ficiency in this genotype 2a context with Y105A displaying a moderate effect (Fig. 2F). In con-
trast, mutating two (YP105/115AA, YL105/127AA and to a lesser extent PL115/127AA) or all
three (YPL105/115/127AAA) of the conserved surface residues simultaneously to alanine,
strongly (YP105/115AA, YL105/127AA and YPL105/115/127AAA) or moderately (PL115/
127AA) reduced the NS2 activation by NS3 (Fig. 2D). To further confirm this observation, the
Flag-NS2-NS3(1–172)GST derivatives with either single (Y105A and P115A) or double alanine
substitutions (YP105/115AA) in the hydrophobic patch of two different HCV genotypes,
genotype 1b (BK) and genotype 2a (JFH1), were analyzed by a RIP assay. The WT and the
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NS2/C184A derivatives of both genotypes served as positive and negative controls, respectively.
As shown in Fig. 3, the impact of the NS3 mutations on NS2-NS3 cleavage is in agreement with
our Western blot results (compare Fig. 3B with Fig. 2C and 2F). Furthermore, the correspond-
ing mutations in both genotypes have a similar impact on the NS2-NS3 cleavage when com-
pared to their respective WT derivate (Fig. 3B). This demonstrates that the mechanism of the
NS3-mediated NS2 protease stimulation is conserved among different genotypes.

The NS3 L127 residue of the hydrophobic surface patch plays an
important role in regulating NS5A hyperphosphorylation and viral RNA
replication
Assuming that the hydrophobic patch on the NS3 surface functions only in NS3-cofactor me-
diated NS2-stimulation, surface mutations in the context of a NS3-5B/JFH1 replicon should
not affect polyprotein processing or RNA replication. To test this hypothesis, we introduced
the NS3 mutations into the luciferase-expressing genotype 2a reporter replicon pFKI389-Luc/
NS3-3’ and determined the RNA replication kinetics of the mutant RNAs relative to the wild
type (WT) and non-replicative (GND) RNAs. Besides the four single mutations (I3A, Y105A,
P115A and L127A), two simultaneous mutations (YP105/115AA and YPL105/115/127AAA)
were analyzed. The majority of the single alanine mutations (I3A, Y105A or P115A) as well as
the combination of Y105 and P115 mutations (YP105/115AA) had no detectable effect on
RNA replication, indicating that the I3, Y105 and P115 surface exchanges do not inhibit any of
the NS3 functions required for RNA replication in the NS3-NS5B/JFH1 replicon context
(Fig. 4A). In contrast, the L127A exchange resulted in a strongly reduced RNA replication level
when present either alone or in combination with Y105A or P115A mutations in the NS3-5B/
JFH1 replicon, suggesting that this residue plays a critical role in HCV genome replication
(Fig. 4A). To characterize the replication phenotype of L127A in more detail, we first deter-
mined if this mutation is affecting the NS3-4A serine protease activity. Accordingly, we intro-
duced the entire set of NS3 mutations into a pcite-NS3-3’/JFH1 plasmid which allows the
replication-independent expression of the NS3-5B polyprotein by using the MVA-T7pol vac-
cinia virus system. Western blot analysis confirmed that all NS3 surface mutations (including
L127A) had no detectable effects on NS3 stability or NS3-NS5B polyprotein processing in this
system (Fig. 4B). In contrast, the analysis of the NS5A phospho-form distribution led to an in-
triguing observation regarding levels of hyperphosphorylated NS5A. While the NS3 mutations
I3A, Y105A, P115A and YP105/115AA exhibited NS5A hyperphosphorylation levels compara-
ble to wild type, the L127A mutation individually or in combination with Y105A, P115A or
YP105/115AA showed a strong reduction in NS5A hyperphosphorylation (Fig. 4B). Strikingly,

Fig 2. A conserved hydrophobic NS3 surface patch consisting of residues Y105, P115 and L127 is important for NS2-activation by NS3. (A)
Location of the residues I3, Y105, P115 and L127 in the NS3 structure of the genotype 1b. The surface residues are shown in green stick representation. The
residues T4, L104, I114 and L126 are depicted in red stick representation. The overall NS3 structure is shown in grey surface representation. Carbon and
backbone ribbon are colored in yellow for the protease domain and blue for the helicase domain, respectively. An enlargement of the NS3 surface patch
consisting of I3, Y105, P115 and L127 is shown on the right. The figure was generated using Pymol version 1.10 and the coordinates of PDB code 1CU1 [30].
(B) Effect of alanine substitutions in NS3 of HCV strain BK on NS2-NS3 cleavage efficiency. Plasmids expressing either wild type (WT) or mutant FLAG-
NS2-NS3(1–172)GST/BK were transfected into Huh7/T7 cells and the cleavage activity was analyzed byWestern blot analysis. (C)Quantification of NS2-
NS3 cleavage fromWestern blots related to Fig. 2B using ImageJ software. (D) The hydrophobic character of the NS3 surface area is important for the NS2
protease stimulation by NS3. The cleavage efficiencies of the indicated BK NS2-NS3 polyprotein fragments carrying either charged (arginine) or hydrophobic
(phenylalanine) NS3 amino acid substitutions were determined byWestern blot analysis. Quantification of theseWestern blots is presented in S3 Fig. (E)
The importance of hydrophobic NS3 surface residues Y105, P115 and L127 for NS2-activation by NS3 is conserved in HCV genotype 2a (JFH1). Plasmids
expressing either wild type (WT) or mutant FLAG-NS2-NS3(1–172)GST/JFH1 were transfected into Huh-7/T7 cells and NS2-NS3 cleavage was analyzed by
Western blot analysis. Blots shown are representative from three different experiments. (F)Quantification of NS2-NS3 cleavage fromWestern blots related to
Fig. 2E.

doi:10.1371/journal.ppat.1004736.g002

HCV NS3 Surface Patch in NS2 Protease Activation and RNA Replication

PLOS Pathogens | DOI:10.1371/journal.ppat.1004736 March 16, 2015 7 / 25



the L127A-replication phenotype correlated with the significant reduction in the ratio of
hyper- to basally phosphorylated NS5A (Fig. 4A and 4C). However, we cannot rule out that
L127A also inhibits other NS3 function(s), not linked to its serine protease activity, which may
also contribute to the negative replication phenotype.

Fig 3. Mutational analysis of the NS3-mediated NS2 protease stimulation demonstrates that this
process is conserved among different HCV genotypes. (A) Transient expression of Flag-NS2-3(1–172)
GST derivatives from genotype 1b (BK) and genotype 2a (JFH1). After transient expression in the presence
of [35S] methionine/cysteine by use of the T7 vaccinia virus system, the cell lysates were subjected to a
radioimmunoprecipitation analysis using an anti-GST antibody. The transfected pcite Flag-NS2-NS3(1–172)
GST plasmids encoding NS2-3 polyprotein fragments of genotype 1b (BK) or genotype 2a (JFH1) are
indicated. WT, wild type; NS2/C184A, NS2-protease inactive mutant; mock, lysates of MVA-T7pol-infected
cells were used for RIP assay. The positions of Flag-NS2-NS3(1–172)GST and NS3(1–172)GST are
indicated by arrowheads. The positions of the mass standards are shown on the left. (B)Quantification of two
independent RIP assays by phosphoimaging.

doi:10.1371/journal.ppat.1004736.g003
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Fig 4. Mutational analysis of the hydrophobic NS3 surface area in the context of a HCV genotype 2a
NS3-5B replicon. (A) Top, schematic representation of the HCV genotype 2a NS3-5B replicon. Bottom, NS3
mutations were engineered into pFKI389-Luc/NS3-3’_JFH1 (WT), in vitro transcribed RNA was
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NS3 mutations defective in NS2 protease stimulation block RNA
replication in a NS2-5B replicon system
NS2-NS3 cleavage is essential to liberate NS3, a step that has been shown to be critical for viral
RNA replication [32]. Accordingly, NS3 mutations that interfere with the NS2 protease activa-
tion in the context of the NS2-5B/JFH1 polyprotein should not only reduce the NS2-NS3
cleavage but also inhibit RNA replication similar to what has been demonstrated with NS2 mu-
tations inactivating the NS2 protease [32]. To test this assumption, we introduced the NS3 mu-
tations into the genotype 2a replicon pFKI389-Luc/NS2-3’ and determined the RNA
replication kinetics of the mutant RNAs relative to the wild type (WT) and the non-replicative
(GND) replicon RNAs. A replicon carrying a NS2-active site mutation (NS2/C-184-A) was
used as a further non-replicative control which is defective in NS2-NS3 cleavage but retains its
serine protease activity. The single mutations I3A, Y105A and P115A in the NS2-5B replicon
RNA allowed for RNA replication to different degrees: the P115A mutant replicon RNA repli-
cated to wild type levels whereas the mutant replicon RNAs I3A and Y105A showed a greater
than 100-fold reduction in RNA replication (Fig. 5A). The L127A mutation in the NS2-5B/
JFH1 replicon inhibited RNA replication to levels similar to the ones observed in the NS3-5B/
JFH1 replicon. Most interestingly, the NS2-5B/JFH1 replicon with the YP105/115AA mutation
that interferes with the NS2 activation by NS3 did not detectably replicate indicating that
inefficient NS2-NS3 cleavage triggered by NS3 surface mutations blocks viral RNA replication
(Fig. 5A).

Efficient NS2-3 cleavage is a prerequisite for NS5A
hyperphosphorylation and RNA replication in a NS2-5B replicon system
Several determinants for NS5A hyperphosphorylation have been mapped to NS3, NS4A and
NS4B and expression of the NS3-5A polyprotein is required for this process. As demonstrated
above, the NS3 mutation L127A strongly reduced NS5A hyperphosphorylation as well as RNA
replication (Fig. 4). At the same time, L127, together with Y105 and P115, constitutes the NS3
surface patch that is required for activation of the NS2 protease in the context of uncleaved
NS2-NS3 (Fig. 2). Therefore, we asked whether NS2-NS3 cleavage in a NS2-5B polyprotein is
mechanistically linked to NS5A hyperphosphorylation. This hypothesis was based on the as-
sumption that the accessibility of L127 on the NS3 surface should be compromised in the con-
text of uncleaved NS2-NS3 with respect to its function in NS5A hyperphosphorylation. To
assess the role of NS2-NS3 cleavage efficiency in regulating NS5A hyperphosphorylation ex-
perimentally, a panel of pcite-FLAG-NS2-3’/JFH1 plasmids was used for NS2-NS5B polypro-
tein expression in Huh-7/T7cells. For a rigorous test, a pcite-FLAG-NS2-3’/JFH1 variant
carrying an NS2 protease active-site mutation (NS2/C-184-A) was used. As expected, the anal-
ysis of the NS2/C-184-A mutant showed that NS2-NS3 cleavage was abrogated without

electroporated into Huh7 Lunet cells, and luciferase activity was measured at 4, 24, 48 and 72 h post
electroporation (pe). Mean values of three independent experiments are shown. Error bars indicate standard
deviations. (B) Top, schematic of the expression construct pcite-NS3-3’/JFH1. This plasmid encodes the
NS3 to NS5B sequence of the HCV genotype 2a (JFH1) as indicated. NS3 mutations were introduced into
pcite-NS3-3’/JFH1 and plasmids were transfected into Huh-7/T7cells infected with MVA-T7pol vaccinia virus.
Bottom, effect of the NS3 mutations on NS3-NS5B polyprotein processing and NS5A hyperphosphorylation.
Cell lysates were prepared 20 h post transfection (pt) and analyzed byWestern blotting with antibodies
directed against HCV NS3, NS4B, NS5A and NS5B. The position of hyper and basally phosphorylated NS5A
is indicated on the right. (C)Western blot signals of NS5A p56 and p58 forms of three Western blots were
quantified by ImageJ software and the ratio of hyperphosphorylation (p58) to total NS5A was calculated. WT,
wild type; GND, polymerase inactive mutant; mock, cells transfected with vector control.

doi:10.1371/journal.ppat.1004736.g004
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Fig 5. Mutational analysis of the NS3mutations in the context of a HCV genotype 2a subgenomic NS2-
5B replicon revealed NS2-NS3 cleavage is a prerequisite for NS5A hyperphosphorylation. (A) Top,
schematic representation of the FKI389-Luc/NS2-3’_JFH1 replicon. Bottom, the NS3 mutations were
introduced into pFKI389-Luc/NS2-3’_JFH1, in vitro transcribed RNA was electroporated into Huh7 Lunet
cells, and luciferase activity was measured at 4, 24, 48 and 72 h pe. Mean values of three independent
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affecting polyprotein processing downstream of NS3 by the serine protease activity (Fig. 5B).
In addition, the abrogation of NS2-NS3 cleavage correlated with a complete loss of NS5A
hyperphosphorylation (Fig. 5B). Therefore, the NS3 release from uncleaved NS2-NS3 appears
to be a prerequisite for NS5A hyperphosphorylation.

Further analyses revealed that single NS3 mutations had small but detectable effects on
NS2-NS3 cleavage efficiency compared to wild type, while combinations of NS3 mutations
(YP105/115AA, PL115/127AA and YL105/127AA) further decreased NS2-NS3 cleavage
(Fig. 5B and 5C) and the triple mutation (YPL105/115/127AAA) almost abolished cleavage.
Importantly, for double and triple mutants with decreased NS2-NS3 cleavage efficiency the
analysis of NS5A revealed strongly reduced levels of hyperphosphorylated NS5A (Fig. 5B and
5C). In addition, analysis of NS5A hyperphosphorylation revealed that the small but detectable
effects on NS2-NS3 cleavage efficiency for the single NS3 mutants I3A and Y105A also corre-
lated with a reduced NS5A hyperphosphorylation compared to either wild type or P115A. In
contrast, L127A decreased the production of NS5A hyperphosphorylation to levels comparable
with the double or triple mutations (Fig. 5B). Thus, the effect of L127A is similar to what has
been observed in the NS3-5B polyprotein. The quantification of NS2-NS3 cleavage and NS5A
hyperphosphorylation indicates that an efficient NS2-NS3 cleavage increases the ratio of
hyper- to basal-phosphorylation of NS5A (Fig. 5B and 5C). Together, these results strengthen
our observation that NS5A hyperphosphorylation is functionally linked to NS2-NS3 cleavage
in a NS2-5B polyprotein context.

The dual function of the NS3 surface patch in stimulating NS2 activation
and regulating NS5A hyperphosphorylation is conserved among HCV
genotypes
Recent work characterizing NS5A hyperphosphorylation in replicons of HCV genotype 1b
(Con1) and genotype 2a (JFH1) isolates revealed significant differences concerning the degree
of correlation between NS5A hyperphosphorylation and viral RNA replication [33–36]. There-
fore, we determined if L127 is also critical for NS5A hyperphosphorylation in the context of
the NS3-5B/Con1 replicase. Accordingly, the NS3 mutations were introduced into a NS3-5B/
Con1 luciferase reporter replicon and analyzed for their effect on RNA replication (Fig. 6A).
NS3-5B/Con1 polyprotein processing as well as the NS5A phospho-form distribution were de-
termined by Western blotting using Huh-7/T7 cells and the MVA-T7pol vaccinia virus system
(Fig. 6B). In agreement with the results obtained for the NS3-5B/JFH1 replicon, the NS3-5B/
Con1 replicons encoding for the NS3 mutants Y105A, P115A and YP105/115AA showed ro-
bust RNA replication, comparable to wild type, while a replicon encoding the NS3 L127A ex-
change was replication-deficient (Fig. 6A). Transient protein expression in cells transfected

experiments are shown. Error bars indicate standard deviations. (B) Top, schematic of the expression
construct pcite-FLAG-NS2-3’/JFH1. This plasmid encodes the T7 promotor sequence fused to the EMCV
IRES followed by a FLAG epitope and NS2 to NS5B sequence of the HCV isolate 2a. Indicated NS3-cofactor
mutations were engineered into pcite-NS2-3’/JFH1 and plasmids were transfected into Huh-7/T7cells
infected with MVA-T7pol vaccinia virus. Bottom, effects of the NS3-cofactor mutations on NS2/3 cleavage,
polyprotein processing and NS5A hyperphosphorylation in the context of NS2-5B. Cell lysates were prepared
20 h pt and analyzed byWestern blotting with antibodies against FLAG-epitope, NS3 and NS5A. The
positions of FLAG-NS2-3, FLAG-NS2, NS3 as well as the hyper and basally phosphorylated NS5A are
indicated on the right. (C) Signals of Flag-NS2-3 and NS3 were quantified by ImageJ software from two
Western blots to calculate the percentage of NS2-3 cleavage. Signals of NS5A p56 and p58 forms of two
Western blots were quantified by ImageJ software and the ratio of hyperphosphorylation (p58) to total NS5A
was calculated. WT, wild type; GND, polymerase-inactive mutant; NS2/C-184-A, NS2-protease inactive
mutant; mock, cells transfected with vector control.

doi:10.1371/journal.ppat.1004736.g005
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Fig 6. NS3-L127A inhibits RNA replication and suppresses NS5A hyperphosphorylation in the
context of a HCV genotype 1b NS3-5B replicon. (A) Top, schematic of the HCV genotype 1b NS3-5B
replicon. Bottom, the NS3 mutations were engineered into pFKI341-Luc/NS3-3’_Con1 (WT), transcribed
RNA was electroporated into Huh7 Lunet cells. Luciferase activity was measured at 4, 24, 48 and 72 h pe.
Mean values of three independent experiments are shown, error bars indicate standard deviations. (B) Top,
schematic of pcite-NS3-3’/Con1. This plasmid encodes the NS3 to NS5B sequence of the HCV isolate 1b
(Con1). NS3 mutations were introduced into pcite-NS3-3’/Con1 and plasmids were transfected into Huh-7/
T7cells infected with MVA-T7pol vaccinia virus. Bottom, effects of the NS3 mutations on NS3-5B polyprotein
processing and NS5A hyperphosphorylation. Cell lysates were prepared 20 h pt and analyzed byWestern
blotting with anti NS3 and NS5A antibodies. The position of hyper and basally phosphorylated NS5A is
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with the corresponding set of mutant pcite-NS3-5B constructs followed by immunoblotting as-
says did not reveal a substantial inhibition of the NS3-5B/Con1 polyprotein processing indicat-
ing that no apparent defect in the NS3-NS4A serine protease was induced by the NS3
mutations (Fig. 6B). In agreement with our results for JFH1, only the substitution L127A sig-
nificantly reduced the ratio of hyper- to basal phosphorylated NS5A relative to wild type in the
context of the NS3-5B/Con1 polyprotein (Fig. 6B).

Next, we also tested in the Con1 replicon system if a correlation between the NS2-NS3
cleavage efficiency and NS5A hyperphosphorylation exists. To this end we first determined the
replication capacities of mutant NS2-5B/Con1 replicons in a transient replication assay.
Among the mutant NS2-5B/Con1 replicons that were examined only the one encoding the
NS3 P115A exchange replicated to wild type level (Fig. 7A). All other NS2-5B/Con1 replicons
examined did not replicate to detectable levels. The observation that the NS2-5B/Con1 repli-
cons with the NS2/C184A, the YP105/115AA and the L127A mutations showed no replication
corroborated our earlier observations in the NS2-5B/JFH1 replicon system. The fact that the
NS2-5B/Con1 Y105A replicon derivative did also fail to replicate was somewhat unexpected
and differs from the Y105A NS2-5B/JFH1 mutant replicon that still replicates at low level com-
pared to WT (Fig. 5A). Processing of the respective Y105A NS2-5B/Con1 polyprotein upon ex-
pression by the MVA-T7 pol vaccinia virus system revealed that the NS2-NS3 cleavage was
already strongly reduced compared to either wild type or the NS3 P115A mutant NS2-5B
(Fig. 7B and 7C). Moreover, in cells expressing the NS2-5B/Con1 Y105A polyprotein, NS5A
hyperphosphorylation was almost undetectable in our Western blot system when compared to
the wild type or NS2-5B/Con1 (P115A) polyprotein (Fig. 7B and 7C). Together, these findings
again emphasize the functional link between NS2-NS3 cleavage efficiency and NS5A
hyperphosphorylation.

Collectively, these results point to a conserved and, so far, unappreciated role of efficient
NS2-NS3 cleavage as a prerequisite for the NS5A hyperphosphorylation during the biogenesis
of the HCV replication complex in different HCV genotypes in a process that is critical for
viral genome replication.

The hydrophobic NS3 surface residues required for NS2 protease
stimulation are not critical for NS2/NS3 interactions and virus assembly
in the context of a bicistronic genome
NS2 is required for virion assembly and this function has been assigned to both the N-terminal
membrane association- and the C-terminal protease domain [19,21,22,37,38]. Accordingly,
the NS2 protease domain not only catalyzes the NS2-NS3 cleavage but also provides determi-
nants for virion morphogenesis. This observation together with the finding that mature NS2 is
interacting with NS3 in a way that has been implicated to coordinate virion assembly [24],
prompted us to test whether mutations in the hydrophobic NS3 surface patch have effects on
infectious virus production. To this end we introduced the NS3 mutations Y105A, P115A,
L127A and YP105/115AA into the JFH1ad-R2a_NS2EI3 genome (S4 and S5 Figs.). In this
bicistronic context, virus assembly can be analyzed independently from NS2-NS3 cleavage and
thus uncouples NS2-NS3 processing from replication and virus assembly. Both single muta-
tions replicated to wild type level, whereas the double mutation (YP105/115AA) exhibited
slightly reduced replication (S4B Fig.). The L127A mutation did not replicate in this bicistronic

indicated on the left. WT, wild type; GND, polymerase-inactive mutant; mock, cells transfected with
vector control.

doi:10.1371/journal.ppat.1004736.g006
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Fig 7. Mutational analysis of NS3 surface residues in a HCV genotype 1b NS2-5B replicon confirm the
critical role of efficient NS2-NS3 cleavage for NS5A hyperphosphorylation. (A) Top, schematic of the
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context (S5 Fig.) confirming our earlier observation that this mutation inhibited RNA replica-
tion (Figs. 4A and 5A). The replication-competent NS3 mutants (Y105A, P115A and YP105/
115AA) have no detectable effect on NS5A hyperphosphorylation in the context of the bicistro-
nic JFH1ad-R2a_NS2EI3 genome (S6 Fig.) as expected from our transient expression experi-
ments with the NS3-5B polyprotein (Fig. 4B). Infectious virus production was similar to wild
type for both single mutants, while the double mutant showed a reduction of infectious titers of
about 10-fold (S4C and S4D Fig.). When we calculated the infectivity release efficiency as a
ratio of infectivity release and replication the double mutation exhibited a 5-fold reduction
compared to wild type, whereas the single mutations showed efficiencies of about 60% of wild
type level (S4E Fig.).

The double mutant YP105/115AA strongly reduces NS2 protease stimulation by NS3
(Fig. 5B) most likely by disturbing surface interactions between NS2 and NS3 in the NS2-NS3
precursor protein. The same mutations mildly reduce the infectivity release efficiency to 20%
of wild type in a bicistronic background (S4E Fig.). We also examined whether the NS3 muta-
tions influence binding between NS2 and NS3, which could, in case of the double mutant
YP105/115AA, explain the observed moderate reduction in virus production. To this end,
Huh7.5 cells were transfected with wild type JFH1ad_HAF-NS2EI3 (carrying a HA-Flag epi-
tope sequence, HAF, in NS2; S7A Fig.) or mutant RNAs encoding individual NS3 substitutions.
After 72 hours cells were harvested, lysed and lysates were used for immunoprecipitation.
Western blot analysis of immunoprecipitated HAF-NS2 protein as well as the co-immunopre-
cipitated NS3 indicated that the mutations in NS3 did not detectably influence NS2:NS3 inter-
action (S7B Fig.). Together, these results showed that virus mutants with substitutions in the
hydrophobic NS3 surface patch are still capable of virus production albeit at slightly (Y105A
and P115A) or moderately (YP105/115AA) reduced levels compared to wild type. This indi-
cates that the hydrophobic NS3 surface residues required for NS2 protease stimulation are not
critical for virus assembly in the context of a bicistronic genome.

Discussion
Polyprotein processing is a key step in the HCV life cycle and the NS2-NS3 autocleavage has
been demonstrated to be essential for RNA replication of full-length virus and subgenomic
NS2-5B replicons [18,32]. NS2 in its cleaved form is also required for virion morphogenesis
[19,22,37–39]. Previous studies have shown that the NS2 protease activity critically depends on
the presence of the NS3 cofactor [17] and that the formation of an NS2 dimer is required for
NS2-NS3 cleavage due to the unique composite nature of the NS2 protease active site
[12,16,20]. Since the structure of the NS2-NS3 protein in its pre-cleavage conformation has not
been determined, the molecular mechanism of the NS2-activation and its regulation
remained enigmatic.

HCV genotype 1b NS2-5B replicon. Bottom, the NS3mutations were built into pFKI341-Luc/NS2-3’_Con1
and transcribed RNA was electroporated into Huh7 Lunet cells. Luciferase activity was measured at 4, 24, 48
and 72 h pe. Mean values of three independent experiments are shown. Error bars indicate standard
deviations. (B) Top, schematic of pcite-NS2-3’/Con1. This plasmid encodes the NS2 to NS5B sequence of
the HCV isolate 1b as indicated. NS3 mutations were introduced into pcite-NS2-3’/Con1 and plasmids were
transfected into Huh-7/T7cells infected with MVA-T7pol vaccinia virus. Bottom, effects of the NS3 mutations
on NS2-5B polyprotein processing and NS5A hyperphosphorylation. Cell lysates were prepared 20 h pt and
analyzed byWestern blotting with antibodies directed against NS2, NS3 and NS5A. The position of hyper
and basally phosphorylated NS5A is indicated. (C) Signals of NS2-3 and NS3 were quantified by ImageJ
software from twoWestern blots to calculate the percentage of NS2-3 cleavage. Signals of NS5A p56 and
p58 forms of twoWestern blots were quantified by ImageJ software and the ratio of hyperphosphorylation
(p58) to total NS5A was calculated. WT, wild type; GND, polymerase-inactive mutant; NS2/C-184-A, NS2-
protease inactive mutant; mock, lysates from cells transfected with vector control.

doi:10.1371/journal.ppat.1004736.g007
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Our finding that a conserved hydrophobic NS3 surface patch composed of Y105, P115 and
L127 is essentially involved in NS2 protease stimulation reveals that NS2 protease stimulation
is mainly directed by specific hydrophobic NS3 surface residues (Fig. 2). This observation is
supported by our mutational characterization of this surface area. While the introduction of
single charged amino acids in this hydrophobic core strongly reduces (P115R) or abolishes
(Y105R, L127R) NS2 protease activation, more conservative phenylalanine exchanges of Y105,
P115 and L127 were tolerated with regard to NS2-NS3 cleavage (Fig. 2B). Accordingly, the hy-
drophobic character of this surface patch is pivotal for the NS3 cofactor function in NS2 prote-
ase activation. The finding that only combinations of these amino acids inhibit NS2-NS3
cleavage suggests that multiple hydrophobic NS3 residues are required to create a continuous
hydrophobic NS3 surface area that interacts with NS2 to stimulate NS2 protease activity
(Fig. 2A). This NS2/NS3 interaction in uncleaved NS2-NS3 likely promotes the efficient forma-
tion of a functional conformation required for productive NS2-NS3 autoprocessing. Interest-
ingly, the NS3 surface area implicated in the formation of a proteolytically active conformation
of the NS2-NS3 complex is situated in the previously defined NS3 Zn2+-binding domain [17].
This domain was shown to represent the functional NS2-protease activating domain and can
also activate NS2-NS3 cleavage in trans [17]. Our results indicate that intrinsic structural pref-
erences in the NS2-NS3 precursor have important regulatory roles in the NS2-NS3 autoclea-
vage reaction. Mechanistically, it has been proposed that the intramolecular NS2-NS3 cleavage
is performed by active NS2-NS3 dimers in the course of co- and posttranslational polyprotein
processing [40]. Although critical residues for NS2 dimerization are not known [16], the detec-
tion of NS2 interactions in mammalian cells by co-immunoprecipitation in the absence of NS3
suggests that NS3 is not essential for NS2 dimer formation [40]. In theory, the formation of a
proteolytically active NS2-NS3 precleavage complex could be promoted by either intermolecu-
lar or intramolecular interactions between NS2 and NS3 (i.e., between the NS2 moiety of one
molecule of NS2-NS3 and the NS3 moiety of a second NS2-NS3 molecule or intramolecular of
NS2-NS3 molecules which form dimers). Future experiments will aim at the identification of
corresponding interaction sites on NS2 and to investigate if the stimulation of NS2 by NS3 in
uncleaved NS2-NS3 is based on intra- or intermolecular protein interactions. Such regulation
of polyprotein processing is also seen in other polyprotein-encoding viruses. For instance, the
regulation of P23 polyprotein processing in alphaviruses is achieved by extensive intramolecu-
lar contacts between nsP2 and nsP3 which may function in positioning and recognition of the
P2/3 cleavage site [41,42]. In contrast, poliovirus 3CD has no intramolecular contacts and
cleavage of the solvent exposed cleavage site is regulated by intermolecular contacts between
3CD molecules [43].

A major finding of this study is that the hydrophobic NS3 surface involved in activating the
NS2 protease has a second important function in the regulation of viral RNA replication. The
L127A mutation in NS3 massively reduced NS5A hyperphosphorylation and this defect
strongly correlated with an inhibition of viral RNA replication of NS3-5B replicons of different
HCV genotypes without affecting the NS3-4A serine protease activity (Figs. 4 and 6). Determi-
nants for NS5A hyperphosphorylation have been mapped to NS3, NS4A and NS4B and expres-
sion of the NS3-5A polyprotein is required for this process [44–47]. These findings suggest
that the molecular basis for the multifactorial nature of NS5A hyperphosphorylation is its de-
pendency on the assembly of the viral replicase.

These results point to a surprising functional overlap of NS3 surface determinants that are
involved in NS2 protease activation and NS5A hyperphosphorylation, a process depending on
viral replicase assembly, with L127 being a structural constituent of both NS3 functions. The
dual role of L127 in promoting NS2-NS3 cleavage and regulating NS5A hyperphosphorylation
prompted us to test whether NS2-NS3 cleavage is a prerequisite for NS5A

HCV NS3 Surface Patch in NS2 Protease Activation and RNA Replication

PLOS Pathogens | DOI:10.1371/journal.ppat.1004736 March 16, 2015 17 / 25



hyperphosphorylation. The detailed mechanism underlying the NS5A hyperphosphorylation
is still poorly understood [34,35,48,49]. It was hypothesized that the generation of authentic
NS2 by NS2-NS3 cleavage is important for NS5A hyperphosphorylation [50]. However, hyper-
phosphorylated NS5A was also detected in the absence of NS2 suggesting that the authentic N-
terminus of NS3, generated by NS2-NS3 cleavage, represents the critical determinant for NS5A
hyperphosphorylation [44,51]. We could demonstrate that mutations either inactivating the
NS2 protease (NS2 C184A) or blocking the NS2 protease cofactor function of NS3 (YP105/
115AA) were blocking or strongly reducing NS5A hyperphosphorylation in NS2-5B polypro-
teins of two different HCV genotypes. Reductions in the NS2-NS3 cleavage efficiency correlat-
ed not only with a decrease in NS5A hyperphosphorylation but also with a block in viral RNA
replication of the respective NS2-5B replicons (Figs. 5 and 7). This correlation became appar-
ent by using the NS2-5B replicons of genotype 1b and 2a. When we compared the impact of
the NS3 mutations on RNA replication in these systems, we observed that the Y105A mutation
inhibited NS2-5B/Con1 replication but was still allowing for RNA replication in the NS2-5B
JFH1 background (compare Figs. 5A and 7A). This difference is most likely due to the signifi-
cantly lower replication capacity of the genotype 1b replicon RNA and is also reflected by the
detectable NS5A hyperphosphorylation only in the case of the NS2-5B/JFH1 (Figs. 5B and 7B).
These results are in line with the recent observation that, although NS2-NS3 cleavage is not
limiting Con1 replication, the formation of the membranous HCV replication complexes (RC)
might be less efficient in Con1 compared to the biogenesis of JFH1 RCs [52].

Based on our data, we propose the following order of events: NS2 in uncleaved NS2-NS3 in-
teracts with the hydrophobic NS3 surface area that includes L127 resulting in NS2 protease
stimulation. As a consequence, in uncleaved NS2-NS3 the NS3 surface surrounding L127 is
most likely not accessible for protein-protein interactions since this region is engaged in
interactions with the NS2 protease domain. Upon NS2 release the NS3 surface area around
L127 becomes available for novel protein-protein interactions that finally allow NS5A hyper-
phosphorylation to occur. We propose that this process is functionally linked to the assembly
of the viral replicase complex and likely involves interactions of NS3 with NS4A [32,47]. More-
over, after NS2 release NS3 can undergo a structural change to adopt a conformation required
for its function within the viral replicase. These changes are suggested to promote inter-
domain co-operations between NS3 helicase and serine protease domain [53] and lead to effi-
cient NS4A binding [32]. Interestingly, such a scenario is supported by the observation that
uncleaved NS2-NS3 exhibits a lower affinity to NS4A when compared to NS3 [32]. In this con-
text it is remarkable that mutations in the NS4A acidic domain could be rescued by second site
mutations in the NS3 protease domain [47]. One of these residues is in close proximity to L127
on the NS3 surface supporting our finding that this region is critical for NS5A hyperphosphor-
ylation and likely for the assembly of the viral replication complex. Together, our data indicate
that NS2-NS3 cleavage is mechanistically linked to NS5A hyperphosphorylation as well as the
assembly of the viral replicase. These intriguing observations reveal an unexpected function for
the NS2-NS3 cleavage and might explain why an efficient liberation of functional NS3 is a pre-
requisite for viral genome replication.

The identification of a hydrophobic surface segment on NS3 as an essential module of the
NS2 protease cofactor in NS3 which also plays a critical role in replicase assembly is an im-
portant step towards a better understanding of the sequential processes involved in the func-
tional assembly of the HCV RNA replication complex at the molecular level which are most
certainly accompanied by conformational transitions within the different macromolecular
complexes.
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Methods

Cell culture
Huh7 Lunet [44] and Huh7/T7 [54] cells were maintained in Dulbecco's modified minimal es-
sential medium supplemented with 10% FCS, 100 U penicillin/100 μg/ml streptomycin, and 2
mM L-glutamine. Huh-7/T7cells were cultured in the presence of 400 μg/ml G418.

Plasmids and mutagenesis
Genomes Con1 [44,55], BK [56], JFH1 [57] have been described. All mutations were intro-
duced via QuikChange (QC) mutagenesis. Details concerning the generation of constructs and
their properties can be found in the supplementary material.

In vitro transcription and electroporation of HCV RNAs
The experimental procedures used to generate in vitro transcripts from cloned HCV sequences
and transfection of Huh-7 cells by electroporation have been described [37]. After electropora-
tion, cells were immediately transferred to complete DMEM and seeded as required for
the assay.

Luciferase assay
At each time point (4, 24, 48, and 72 h), cells were washed with PBS, scraped into 1 ml of PBS
and collected by centrifugation. The cells were lysed in 40 μl of lysis buffer (PJK-GmbH). 20 μl
of the lysate was analyzed using the Beetle Juice luciferase assay system (PJK-GmbH) and mea-
sured in a luminometer (Junior LB9509, Berthold).

Vaccinia virus infection, DNA transfection and transient protein
expression
The applied procedures have been described [58]. HCV nonstructural proteins were expressed
from pcite plasmids. Briefly, 2 x 106 Huh-7/T7 cells were infected with MVA-T7pol vaccinia
virus [59] and subsequently transfected with 4 or 8 μg of plasmid DNA by using Superfect re-
agent (QIAGEN).

SDS-PAGE and western blotting
Proteins were separated in polyacrylamide-Tricine gels. After SDS-PAGE, proteins were trans-
ferred onto a nitrocellulose membrane (Pall, USA). The membrane was blocked with 5% (w/v)
dried skim milk in phosphate-buffered saline with 0.05% (v/v) Tween 20 (Invitrogen). For anti-
gen detection, anti-NS5A 9E10 [60], mouse monoclonal antibody against NS3 of the JFH-1 iso-
late (4D11) (generated in a cooperation between Harish Ramanathan, Michael Engle, Michael
S. Diamond and Brett D. Lindenbach) or anti-NS3 (2E3) [61], anti-NS2 (YAL-4-70-8, Cell Es-
sentials), anti-NS4B [62], anti-FLAG (Sigma), anti-V5 (Invitrogen), anti-HA (HA.11 clone
16B12, Covance) and anti-GST (GE Healthcare), antibodies were used in 2% (w/v) dried skim
milk in phosphate-buffered saline with 0.05% (v/v) Tween 20. For primary antibody detection,
horseradish peroxidase-conjugated species-specific secondary antibodies (Dianova) were used
at a 1:3000 dilution andWestern Lightning Chemiluminescence Reagent Plus (Perkin Elmer)
was applied prior to imaging using a LAS 4000 imaging system (Biorad, Munich). Quantifica-
tions of Western blots were carried out using ImageJ 1.47t software (NIH, Bethesda).
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Metabolic labeling of proteins
HCV nonstructural proteins were expressed from pcite plasmids. For transient protein expres-
sion, 2 x 106 Huh-7/T7 cells were infected with MVA-T7pol vaccinia virus [59] and subse-
quently transfected with 4 μg of plasmid DNA by using Superfect reagent (QIAGEN). Cells
were kept in DMEM culturing medium for 2 h. Medium was changed to DMEM (lacking L-
Methionine, L-Cysteine and L-Glutamine) supplemented with 1% Glutamax (Gibco). After
30 min the medium was changed again for DMEM (lacking L-Methionine, L-Cysteine and L-
Glutamine) supplemented with 1% Glutamax (Gibco), containing 70 μCi (1Ci = 37GBq) [35S]-
labeled methionine/ cysteine (Hartmann Analytics).

RIP
After 6 h cells were lysed in 250 μl RIPA(G) [150 mMNaCl, 1% (vol/vol) Nonidet NP40, 0.5%
(wt/vol) deoxycholate, 0.1% (wt/vol)SDS, 50 mM Tris (pH 8)], containing 1 mM PefablocSC

(Roth). The following steps were performed at 4°C, mixing was ensured by placing samples on
a spinning wheel. Lysates were incubated for 30 min and then centrifuged for 30 min at 16.000
g. The supernatants were incubated with anti-GST antibody (GE Healthcare) 1:400 in RIPA
(G) for 1 h, then 50 μl of a 20% (vol/vol) Protein-A-Sepharose suspension were added and in-
cubated for another hour. The Protein-A-Sepharose was pelleted at 16.000 g and washed 3 x
with RIPA(G). Proteins were denatured in sample buffer containing 5% β-Mercaptoethanol at
95°C for 10 min and then separated in polyacrylamide-tricine gels with 8% polyacrylamide.
SDS-Gels were fixed in a solution containing 40% methanol and 10% acetic acid, dried and ex-
posed to Imaging screens (Fuji) for 1–3 days. Readouts were performed using Phosphorimager
(Fuji BAS). Quantifications were carried out with AIDA Image Analyzer (Version 3.52) soft-
ware using a background substraction method.

Supporting Information
S1 Fig. Effect of selected NS3 double mutations on NS3-4A serine protease activity. (A)
Scheme of the HCV NS3-4A serine protease assay. NS3-4A-mediated cleavage of co-expressed
FLAG-MBP-NS4B-NS5A-trx-HA/BK serine protease substrate results in the generation of
FLAG-MBP-NS4B and NS5A-trx-HA cleavage products. (B) NS3-4A serine protease assay.
Plasmids with the indicated amino acid mutations were expressed and NS4B-NS5A cleavage
was detected by Western blotting. WT refers to wild type NS3(1–172), pcite-V5-NS4A/BK re-
fers to a plasmid expressing the V5-tagged NS4A cofactor, pcite-FLAG-MBP-NS4B-NS5A-trx-
HA/BK indicates a plasmid expressing the serine protease cleavage substrate FLAG-MBP-
NS4B-NS5A-trx-HA. Mock indicates cells transfected with a vector control. The positions of
the NS3(1–172)GST, V5-NS4A, FLAG-MBP-NS4B-NS5A-trx-HA, FLAG-MBP-NS4B and
NS5A-trx-HA proteins are indicated by arrows. (C) Signals of FLAG-MBP-NS4B-NS5A-trx-
HA and NS5A-trx-HA were quantified by ImageJ software from twoWestern blots to calculate
the percentage of FLAG-MBP-NS4B-NS5A-trx-HA cleavage as an indication of the NS3 serine
protease activity.
(TIF)

S2 Fig. A conserved hydrophobic NS3 surface patch consisting of residues Y105, P115 and
L127 is important for NS2-activation by NS3. Location of NS3 residues identified in the di-al-
anine scan to inhibit the NS2-NS3 cleavage in the NS3 structure of the genotype 1b. The di-ala-
nine mutations that specifically inhibit NS2 activation by NS3 (IT3/4, LY104/105 and IP114/
115) are shown in green stick representation. The position of LL126/127 is marked in light
green stick representation to indicate the reduced NS3 serine activity of this mutant in the
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NS4B-NS5A trans cleavage assay. The NS3 residues LV106/107, PL142/143, GI152/153 and
DF168/169 identified in the di-alanine scan to inhibit the NS2 activation by NS3 as well as the
NS3 serine protease activity in a NS4B-NS5A trans cleavage assay are shown in red stick repre-
sentation. The overall NS3 structure is shown in grey surface representation. Carbon and back-
bone ribbon are colored in yellow for the protease domain and blue for the helicase domain,
respectively. An enlargement of the NS3 is shown on the right. The active site of the NS3 serine
protease is indicated. The figure was generated using Pymol version 1.10 and the coordinates
of PDB code 1CU1 [31].
(TIF)

S3 Fig. The hydrophobic character of the NS3 surface area is important for the NS2 prote-
ase stimulation by NS3. The cleavage efficiencies of the indicated BK NS2-NS3 polyprotein
fragments carrying either charged (arginine shown in panel A) or hydrophobic (phenylalanine
shown in panel B) NS3 amino acid substitutions were determined by Western blot analysis.
Western blot signals of Flag-NS2-3(1–172)GST and Flag-NS2 of two independent Western
blots were quantified by ImageJ software and the percentage of NS2-NS3 cleavage
was calculated.
(TIF)

S4 Fig. Impact of amino acid substitutions in NS3 protein on the HCV replication and in-
fectivity release. (A) Schematic diagram of the full length JFH1ad-R2a_NS2EI3 genome used
for functional characterization. The HCV proteins and NTRs are represented as white boxes,
renilla luciferase (RenLuc) used for indirect quantitative analysis of HCV genome is shown in
dark gray. FMDV 2A peptide sequence in light gray facilitates release of authentic core protein.
The EMCV IRES sequence was inserted between NS2 and NS3 sequences to separate protease
activity from replication and is shown as a black box. Cell culture titer enhancing mutations in
NS5A and NS5B (V2153A, V2440L and V2941M) are represented as white stars. The positions
of NS3 aa substitutions Y105A and P115A are indicated as a black star. (B) Huh7.5 cells were
transfected with viral RNA specified at the bottom of the graph and kinetics of HCV genome
replication were quantified 24, 48 and 72 hours post transfection by luciferase assay. (C) Super-
natants of transfected cells containing released infectious particles were harvested 24, 48 and
72 hours post transfection and used for infection of naïve Huh7.5 cells. After three days, in-
fected cells were lysed and intracellular luciferase activity was measured. (D) Huh7.5 cells were
transfected with RNAs specified at the bottom of the graph and release of infectious particles
into culture supernatants were quantified 24, 48 and 72 hours post transfection by TCID50
assay. In panels (B), (C) and (D) representative results of two independent experiments per-
formed in duplicates with standard deviations are shown. Dotted lines represent background
values of the assays. (E) Efficiency of infectivity release was estimate as a ratio of infectivity re-
lease (luciferase value of graph C) and replication (luciferase value of graph B).
(TIF)

S5 Fig. Impact of L127A amino acid substitution in NS3 protein on the JFH1ad-
R2a_NS2EI3 replication and infectivity release. (A) Huh7.5 cells were transfected with viral
RNA specified at the bottom of the graph or mock transfected and kinetics of HCV genome
replication were quantified 4, 24, 48 and 72 hours post transfection by luciferase assay. (B) Su-
pernatants of transfected cells containing released infectious particles were harvested 24, 48
and 72 hours post transfection and used for infection of naïve Huh7.5 cells. After three days,
infected cells were lysed and intracellular luciferase activity was measured. (C) The kinetics of
replication (data from panel A) was determined by normalizing the relative light units at the
different time points to the mock value and the respective 4-h value. In panels (A) and (B)
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representative results of two independent experiments performed in duplicates with standard
deviations are shown. Dotted lines represent background values of the assays measured with
blank buffer.
(TIF)

S6 Fig. Substitution of Y105A or P115A amino acid in NS3 protein does not have signifi-
cant impact on the NS5A protein phosphorylation in the context of infectious full-length
virus JFH1ad_HAF-NS2EI3. (A) Huh7.5 cells were transfected with viral RNA specified at
the bottom or mock transfected, the cell lysates were harvested 72 hours post transfection and
analyzed by Western Blot assay. (B) Western blot signals of NS5A p56 and p58 forms of six in-
dependent Western blots from two biological repetitions were quantified by Quantity One soft-
ware and the ratio of p58 and p56 was calculated.
(TIF)

S7 Fig. Amino acid substitutions in the NS3 protein do not significantly affect interaction
with NS2 protein in the full length bicistronic viral context. (A) A schematic diagram of the
full length JFH1ad_HAF-NS2EI3 genome used for NS2/NS3 proteins co-immunoprecipitation.
The HCV proteins and NTRs are represented as white boxes. EMCV IRES sequence inserted
between NS2 and NS3 sequences and HA and Flag tag sequences are shown as black boxes.
Cell culture titer enhancing mutations in NS5A and NS5B (V2153A, V2440L and V2941M)
are represented as white stars. Position of NS3 aa substitutions Y105A and P115A is shown as
a black star. (B) Huh7.5 cells were transfected with wt or genome containing an NS3 aa substi-
tution and harvested after 72 hours and lysed. The HCV construct without HA-Flag tag se-
quence (JFH1ad_NS2EI3) and mock-transfected cells were used as technical negative controls.
Protein samples were used for HA specific immunoprecipitation. Pull down efficiency of HAF-
NS2 protein as well as co-immunoprecipitated NS3 protein were analyzed by Western Blot
assay. Input lysate and sample containing immunoprecipitated proteins were loaded on the gel
in the ration 1:10.
(TIF)

S1 Text. Supporting materials and methods. Supporting reference list.
(DOC)
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